Cellular and Molecular Effects of High-Molecular-Weight Heparin on Matrix Metalloproteinase 9 Expression

Huber, René ORCID; Attili/Abedalkhader, Rozan; Küper, Daniela; Hauke, Lara; Lüns, Bernadette; Brand, Korbinian; Weissenborn, Karin; Lichtinghagen, Ralf

Blood sampling with different anticoagulants alters matrix metalloproteinase (MMP-) 9 expression, thus influencing its concentration and diagnostic validity. Here, we aimed to evaluate the effects of different anticoagulants on MMP-9 regulation. MMP-9 expression was assessed in response to ethylenediaminetetraacetic acid, citrate, and high-/low-molecular-weight heparin (HMWH, LMWH) in co-culture experiments using THP-1, Jurkat, and HT cells (representing monocytes, T, and B cells). Triple and double cell line co-culture experiments revealed that HMWH treatment of THP-1 and Jurkat led to a significant MMP-9 induction, whereas other anticoagulants and cell type combinations had no effect. Supernatant of HMWH-treated Jurkat cells also induced MMP-9 in THP-1 suggesting monocytes as MMP-9 producers. HMWH-induced cytokine/chemokine secretion was assessed in co-culture supernatant, and the influence of cytokines/chemokines on MMP-9 production was analyzed. These experiments revealed that Jurkat-derived IL-16 and soluble intercellular adhesion molecule (sICAM-) 1 are able to induce MMP-9 and IL-8 production by THP-1. As a consequence, the increased MMP-9 expression found in HMWH blood samples may be influenced by HMWH-dependent secretion of IL-16 and sICAM-1 by T cells resulting in an increased production of MMP-9 and IL-8 by monocytes. IL-8, in turn, may support MMP-9 and its own expression in a positive autocrine feedback loop

Cite

Citation style:

Huber, René / Attili/Abedalkhader, Rozan / Küper, Daniela / et al: Cellular and Molecular Effects of High-Molecular-Weight Heparin on Matrix Metalloproteinase 9 Expression. 2019.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:

Export