Toxicity of fatty acid profiles of popular edible oils in human EndoC-βH1 beta-cells.

von Hanstein, Anna-Sophie; Lenzen, Sigurd; Plötz, Thomas

An inappropriate diet, particularly excessive consumption of dietary fats and oils, may have a major negative impact on beta-cell function and cause type 2 diabetes mellitus. To investigate this issue, we examined the toxicity of free fatty acid (FFA) compositions mirroring the FFA profiles of various popular edible oils in human EndoC-βH1 beta-cells and in rat islets. For this purpose, we made compositions consisting exclusively of various FFAs in different volumetric percentages mimicking these oils and additionally mixtures of these compositions. Human EndoC-βH1 beta-cells were incubated with different oil compositions and the toxicity, lipid droplet formation, ER-stress, and H2O2 production were analyzed. Compositions with prominent content of saturated as well as unsaturated long-chain FFAs showed moderate but significant toxicity both in human EndoC-βH1 beta-cells and rat islets, however, without further measurable metabolic impairments. On the other hand compositions with high content of medium-chain FFAs revealed no toxicity. A composition with 50% of the very long-chain unsaturated FFA erucic acid caused high toxicity with concomitant peroxisomal H2O2 production. The toxicity of FFAs to human EndoC-βH1 beta-cells was dampened in mixtures of FFA compositions with a significant content of medium-chain FFAs, but not with a significant proportion of unsaturated FFAs.

Cite

Citation style:

von Hanstein, Anna-Sophie / Lenzen, Sigurd / Plötz, Thomas: Toxicity of fatty acid profiles of popular edible oils in human EndoC-βH1 beta-cells.. 2020.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:

Export