EVERY LIKE IS NOT THE SAME

To the Editor:

We read with great interest the report about the late outcome of de-cellularized aortic homografts (DAH) used for aortic valve replacement (AVR) in middle-aged adults, one-quarter of patients having acute endocarditis.1

Helder et al1 described a trend for higher reoperation rates in DAH versus standard cryopreserved homografts and comparable histological modes of degeneration. We, as the investigators of a European-wide prospective trial on DAH for AVR, however, felt that the title may be somewhat misleading, as every like is not the same.

Decellularization of biological matrices can be performed by different protocols and results may not necessarily be comparable, as mechanical properties of the matrix structure are crucial for durability. Preservation of the matrix structure is also essential for recellularization. Homografts in the report by Helder et al1 have been cryopreserved and radiated before implantation. Both of these procedures have been demonstrated to affect the ultrastructure.2 In contrast, the ARISE trial is evaluating fresh, non-cryopreserved DAH for AVR.

Previous work has shown auspicious early results in a limited cohort of children and young adults (n = 69, mean age 19.7 ± 14.6 years, mean follow-up 2.0 ± 1.8 years) prone to rapid degeneration and regeneration.3,4 Anecdotal experience from some of our grafts has been favorable. Figure 1 (and the Videos 1-3) show the excellent function of such a homograft 8 years after implantation in an 8-year-old girl without any evidence of degeneration or

The Editor welcomes submissions for possible publication in the Letters to the Editor section that consist of commentary on an article published in the Journal or other relevant issues. Authors should: • Include no more than 500 words of text, three authors, and five references. • Type with double-spacing. • See http://jtcvs.ptsnetjournals.org/misc/ifora.shtml for detailed submission instructions. • Submit the letter electronically via jtcvs.editorialmanager.com. Letters commenting on an article published in the JTCVS will be considered if they are received within 6 weeks of the time the article was published. Authors of the article being commented on will be given an opportunity of offer a timely response (2 weeks) to the letter. Authors of letters will be notified that the letter has been received. Unpublished letters cannot be returned.

Follow up of a 18 mm homograft in a 8-year old girl

FIGURE 1. Follow-up after implantation of an 18-mm fresh, noncryopreserved decellularized aortic homograft in an 8-year-old girl. Within 8 years, no degeneration of cusps was observed, aortic valve ring and effective orifice area increased.
We also did not see calcification in a histological examination of an explanted aortic valve 4.5 years after implantation in an 8-week-old infant. Recellularization by noninflammatory recipient cells was seen in this patient, where the aortic valve developed regurgitation potentially related to a recurrent subvalvular stenosis.3

In another infant, 4 months after implantation of non-valved DAH in a staged Norwood procedure, adequate recellularization was found in the outer two-thirds of the circumference, underlining the importance of the adventitial space.5

Good long-term performance of DAH necessitates integration of the graft and regeneration by recellularization, which, however, is much more likely to occur when there is a near-normal anatomic position and blood flow. Even a normal heart valve will degenerate in pathological flow conditions due to limited regenerative capacity in such situation. One, to our understanding, cannot expect a decellularized homograft to perform even better and we therefore aim for almost laminar flow conditions and we also aim to avoid obstruction for recellularization, such as tissue-glue, foreign material, or wrapping procedures.

Axel Haverich holds shares in corlife oHG, a company for the processing of decellularized allografts used in this study. All other authors have nothing to disclose with regard to commercial support.


Acute endocarditis cannot be viewed as an ideal setting for recellularization by regular recipient cells. The open matrix may even allow for bacterial invasion, thereby prompting infiltration of immune competent cells and inflammatory cascades leading to early calcification. We, therefore, do not recommend the use of decellularized matrices in the setting of acute endocarditis, even though the endocarditis susceptibility of DAH at this point appears low.

The ARISE investigators strongly agree with the editorial comments made by Dr Bando proposing late outcome studies on DAH. In fact, prospective long-term follow-up is part of both investigator-initiated European-wide trials on fresh decellularized allografts for pulmonary and aortic valve replacement to answer the question of whether such homografts are really superior, or just fashion.

References


http://dx.doi.org/10.1016/j.jtcvs.2017.01.046

Finding the Next Good Thing

Reply to the Editor:

Cardiovascular surgeons continue to innovate materials. Artificial vascular grafts such as polytetrafluoroethylene and Dacron have a long history of “adequacy” with acknowledged limits. Bioprosthetic grafts have offered a dense forest of options. Current efforts include cryopreserved homografts, bovine jugular grafts (some with bioprosthetic valves), harvested umbilical vein, and various types of decellularized vascular grafts. Each has potential advantages. Tissue-engineered approaches are starting to show promise. With that many options, it is obvious there is not a perfect choice. In this...