Die Crista zygomaticoalveolaris des Menschen unter besonderer Berücksichtigung ihrer Eignung als Spenderregion bei der Gewinnung von intraoralen Knochentransplantaten

Dissertation zur Erlangung des Doktorgrades der Zahnheilkunde in der Medizinischen Hochschule Hannover

vorgelegt von Insa Kristin Wiedemann
aus Hannover

Hannover 2014
Angenommen vom Senat der Medizinischen Hochschule Hannover
am 15.04.2015

Gedruckt mit Genehmigung der Medizinischen Hochschule Hannover

Präsident: Prof. Dr. med. Christopher Baum
Betreuer dieser Arbeit: Prof. Dr. med. Dr. med. dent. Hannes Schierle
Referent: Prof. Dr. med. Michael Jagodzinski
Korreferent: Prof. Dr. med. Dr. med. dent. André Eckardt
Tag der mündlichen Prüfung: 15.04.2015
Prüfungsausschussmitglieder: Prof. Dr. med. dent. Rainer Schwestka-Polly
Prof.‘in Dr. rer. nat. Claudia Grothe
PD Dr. med. dent. Anne-Katrin Lührs
Meiner Familie
Inhaltsverzeichnis

1. Einleitung .. 1
2. Literaturübersicht ...3
 2.1 Knochendefekte vor Implantation ...3
 2.2 Materialien zur Knochenaugmentation ..4
 2.2.1 Alloplastische Knochenersatzmaterialien ..4
 2.2.2 Xenogene Knochentransplantate ...5
 2.2.3 Allogene Knochentransplantate ...6
 2.2.4 Autogene Knochentransplantate ...6
 2.3 Spenderregionen autogener Knochentransplantate ...7
 2.3.1 Crista iliaca ...8
 2.3.2 Tibia ...9
 2.3.3 Schädelkalotte ..9
 2.3.4 Unterkiefer symphyse ..10
 2.3.5 Ramus mandibulae und Corpus mandibulae ...11
 2.3.6 Processus coronoideus ..11
 2.3.7 Retromolarregion ..12
 2.3.8 Tuberositas maxillae ..13
 2.4 Crista zygomaticoalveolaris ..13
 2.4.1 Anatomische Grundlagen ..13
 2.4.2 Klinische Studien ..16
 2.4.3 Bisherige Studien zur Anatomie der Crista zygomaticoalveolaris18
3. Fragestellung .. 19
4. Material und Methoden ..21
 4.1 Analyse des Knochentransplantats auf Computertomographien23
 4.1.1 Übersicht über Aufbau und Gestaltung ..23
 4.1.2 3-D-Diagnose- und Therapieplanungsssoftware VoXim®24
 4.1.3 Durchführung der Messungen ..24
 4.1.4 Vermessung der koronaren Krümmung ..26
 4.1.5 Vermessung der horizontalen Krümmung ..27
<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.6 Vermessung der Knochendicke</td>
<td>27</td>
</tr>
<tr>
<td>4.1.7 Vermessung des Abstands des Transplantats zum Foramen infraorbitale</td>
<td>28</td>
</tr>
<tr>
<td>4.1.8 Vermessung der kranio-kaudalen Länge</td>
<td>29</td>
</tr>
<tr>
<td>4.2 Praktische Überprüfung an Human-Schädelpräparaten</td>
<td>29</td>
</tr>
<tr>
<td>4.2.1 Übersicht über Aufbau und Gestaltung</td>
<td>29</td>
</tr>
<tr>
<td>4.2.2 Durchführung der Messungen</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3 Vermessung der koronaren Krümmung</td>
<td>31</td>
</tr>
<tr>
<td>4.2.4 Vermessung der horizontalen Krümmung</td>
<td>32</td>
</tr>
<tr>
<td>4.2.5 Vermessung der Knochendicke</td>
<td>32</td>
</tr>
<tr>
<td>4.2.6 Vermessung des Abstands zum Foramen infraorbitale</td>
<td>33</td>
</tr>
<tr>
<td>4.3 Zusammenfassung der Ergebnisse</td>
<td>33</td>
</tr>
<tr>
<td>4.3.1 Statistische Analyse</td>
<td>33</td>
</tr>
<tr>
<td>5. Ergebnisse</td>
<td>34</td>
</tr>
<tr>
<td>5.1 Ergebnisse der CT-Analyse</td>
<td>34</td>
</tr>
<tr>
<td>5.1.1 Koronare Krümmung des Transplantats</td>
<td>34</td>
</tr>
<tr>
<td>5.1.2 Horizontale Krümmung des Transplantats</td>
<td>34</td>
</tr>
<tr>
<td>5.1.3 Knochendicke des Transplantats</td>
<td>35</td>
</tr>
<tr>
<td>5.1.4 Abstand zum Foramen infraorbitale</td>
<td>37</td>
</tr>
<tr>
<td>5.1.5 Kranio-kaudale Länge des Transplantats</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Ergebnisse der Analyse der Human-Schädelpräparate</td>
<td>38</td>
</tr>
<tr>
<td>5.2.1 Koronare Krümmung des Knochenstücks</td>
<td>38</td>
</tr>
<tr>
<td>5.2.2 Horizontale Krümmung des Knochenstücks</td>
<td>38</td>
</tr>
<tr>
<td>5.2.3 Knochendicke des Knochenstücks</td>
<td>39</td>
</tr>
<tr>
<td>5.2.4 Abstand zum Foramen infraorbitale</td>
<td>40</td>
</tr>
<tr>
<td>5.2.5 Kranio-kaudale Länge des Knochenstücks</td>
<td>40</td>
</tr>
<tr>
<td>5.3 Zusammenfassung der Ergebnisse</td>
<td>41</td>
</tr>
<tr>
<td>5.3.1 Klassifikation der Merkmale</td>
<td>41</td>
</tr>
<tr>
<td>5.3.2 Vergleich der Ergebnisse in den verschiedenen Klassifikationen</td>
<td>43</td>
</tr>
<tr>
<td>6. Diskussion</td>
<td>48</td>
</tr>
<tr>
<td>6.1 Diskussion der Methode</td>
<td>48</td>
</tr>
<tr>
<td>6.2 Diskussion der Ergebnisse</td>
<td>50</td>
</tr>
</tbody>
</table>
Abkürzungen

3-D dreidimensional
BDIZ/EDI Bundesverband implantologisch tätiger Zahnärzte in Europa/
 European Association of Dental Implantologists
BMP bone morphogenetic protein
BSE Bovine spongiforme Enzephalopathie
°C Grad Celsius
CBCT Cone-Beam-Computertomographie
CJK Creutzfeldt-Jakob-Krankheit
CT Computertomographie
DFDBA demineralized freeze-dried bone allograft
DICOM Digital Imaging and Communications in Medicine
DFDBA freeze-dried bone allograft
HBV Hepatitis-B-Virus
HCV Hepatitis-C-Virus
HIV Humanes Immundefizienz-Virus
KI Konfidenzintervall
mm Millimeter
MSCT Mehrzeilen-Spiral-Computertomographie
n Anzahl
VAS Visuelle Analogskala
1. Einleitung

Die Rehabilitation von Knochendefekten, die durch chronische parodontale Entzündungen, Traumata, fehlende kaufunktionelle Belastung von Kieferabschnitten, kongenitale Nichtenanlagen und Zahnextraktionen hervorgerufen worden sind, gilt immer noch als eine der komplexesten Aufgabe in der präimplantologischen Chirurgie (3-5). Ein ungenügendes Knochenlager gefährdet einen langfristigen Implantaterfolg und erfordert daher im Vorfeld oft aufwändige Augmentationsverfahren unter Verwendung von Knochentransplantaten oder Knochenersatzmaterialien (5).

Bei der Auswahl der geeigneten Augmentationstechnik für die jeweiligen klinischen Gegebenheiten erhalten Methoden den Vorzug, die eine geringere Komplikationsrate und Entnahmemorbidität, bei einer minimalinvasiven, einfachen klinischen Durchführbarkeit zeigen (6,7).

Die Crista zygomaticoalveolaris am Übergang der Maxilla zum Os zygomaticum wurde 2005 als intraorale Spenderregion eingeführt (16). Insbesondere nach Zahnextraktion kommt es im Oberkieferfrontzahnbereich im Bereich der bukkalen Lamelle zu Resorptionen (5,17), die präimplantologisch aufgebaut werden müssen. Für solche Situationen bietet die Crista zygomaticoalveolaris durch ihre konvexe Form eine

In der vorliegenden Arbeit sollen daher erstmals quantitative und qualitative Analysen zur Geometrie und den Dimensionen der Crista zygomaticoalveolaris anhand von Computertomographien der Mittelgesichtsregion und Human-Schädelpräparaten durchgeführt, sowie die räumliche Nähe zum Foramen infraorbitale bestimmt werden, um Potentiale und Grenzen der Anwendung der Spenderregion besser verstehen zu können.
2. Literaturübersicht
In diesem Kapitel wird zunächst in die Problematik von Knochendefekten vor Implantation eingeführt. Es folgt ein Überblick über unterschiedliche Augmentationsmaterialien. Im Anschluss werden verschiedene autogene Spenderregionen vorgestellt und die bisherigen Forschungsergebnisse zur Crista zygomaticoalveolaris erläutert.

2.1 Knochendefekte vor Implantation

Die Versorgung des teil- oder unbezahnten Gebisses mit Implantaten ist somit nur mit einer adäquaten Knochenhöhe, Knochendichte und Knochenbreite möglich (20,21). Dabei variieren die Angaben zum Mindestangebot von Knochenmaterial vor Implantation je nach geplanter Position: während die Knochenhöhe im atrophierten Unterkiefer mindestens 6-10 mm betragen sollte, ist im Oberkiefer eine Höhe von mindestens 10 mm nötig. Die Breite sollte unabhängig von der Position mindestens 4-6 mm betragen (22).

Für die Klassifikation von Knochendefiziten sind zahlreiche Einteilungen in der Literatur vorgestellt worden (30-32), im Folgenden soll nur auf die Einteilung vom Bundesverband der implantologisch tätigen Zahnärzte in Europa (BDIZ/EDI) eingegangen werden, da diese mehrere Aspekte miteinander vereint. Sie gliedert sich in drei Codes, die zum einen die Defektorientierung (horizontal, vertikal, kombiniert, im Sinusbereich), den Rekonstruktionsbedarf (< 4 mm, 4-8 mm, > 8 mm) und die Relation von Augmentation
Literaturübersicht

und Defektumgebung (innerhalb oder außerhalb der Kieferkammgeometrie) eines Knochendefekts miteinander kombinieren (26). Die präimplantologische Rekonstruktion dieser Knochendefizite mit Augmentationsverfahren ist für eine erfolgreiche Implantation unumgänglich.

2.2 Materialien zur Knochenaugmentation

2.2.1 Alloplastische Knochenersatzmaterialien

Hydroxylapatit zeigt eine gute Biokompatibilität und geht einen direkten Verbund mit dem umgebenden Gewebe ein (43). Hydroxylapatit wird kaum im Knochen abgebaut, sondern
von Knochenzellen besiedelt (44,45) und ist sehr stabil (46-49). Im Handel ist beispielsweise NanoBone® (Firma Ar tess, Rostock, Deutschland) als synthetisch hergestelltes Hydroxylapatit bekannt. Die Herstellung erfolgt bei einer Temperatur unter 700°C im Sol-Gel-Verfahren, so dass eine dem natürlichen Knochen ähnliche Nanostruktur entsteht (50).

Trikaliumporphosphat Ca₃(PO₄)₂ existiert in Form von α- und β-Kristallstrukturen. Das β-Trikaliumporphosphat stellt die Tieftemperaturmodifikation des Trikaliumporphosphats dar und wird aufgrund der stabileren Form bei Raumtemperatur häufiger verwendet (51,52). Im Vergleich zu Hydroxylapatit zeigt das β-Trikaliumporphosphat eine höhere aber auch nicht vollständige Löslichkeit im umgebenden Gewebe (52-54). Ein Vertreter des β-Trikaliumporphosphats ist Cerasorb® Ortho (Firma Curasan, Kleinostheim, Deutschland). Es wird über einen Sinterprozess aus Calciumcarbonat und Calciumhydrogenphosphat produziert und zeigt eine Phasenreinheit von über 99% (55).

2.2.2 Xenogene Knochentransplantate

Ein Knochenmaterial phykogenen Ursprungs ist Algipore® (Firma Dentsply, Mannheim, Deutschland). Aus einer Rotalge (Corallina officinalis) wird über Erhitzen das anorganische Kalziumphosphat isoliert. Das Material dient als Leitstruktur für einwachsende Zellen und Gefäße, zeigt eine hohe Biokompatibilität und wird vom Körper abgebaut (63,64).
2.2.3 Allogene Knochentransplantate

Bei der allogenen Knochentransplantation wird Knochenmaterial von histo-inkompatiblen Individuen der gleichen Spezies verwendet (40,41).

Der Knochen stammt entweder von Leichen oder Lebendspendern und wird in speziellen Gewebebanken konserviert und gelagert (65).

Die Vorteile dieser Materialien liegen zum einen in ihrer großen Verfügbarkeit, zum anderen fehlt jegliche Entnahmemorbidität (33). Der große Nachteil besteht in der potentiellen Antigenität (66,67). Um die Antigenität der allogenen Knochentransplantate herabzusetzen, werden heutzutage die Verfahren der Gefriertrocknung und des Einfrierens eingesetzt, ihre Wirkung steht aber noch in Diskussion (68-70). Ein weiteres Risiko stellt die Übertragung viraler Infektionskrankheiten dem Humanen Immun defizienz-Virus (HIV), Hepatitis-C-Virus (HCV) und Hepatitis-B-Virus (HBV) und Prionenerkrankungen (BSE, Creutzfeldt-Jakob-Krankheit (CJK)) von Spender zu Empfänger dar (71-75). Das Übertragungsrisiko von HCV wird in der Literatur mit 1:10.000-50.000, das von HBV auf 1:100.000 angegeben (76,77). Die Wahrscheinlichkeit alloplastische Knochenmaterialien von einem unerkannten HIV-infizierten Menschen zu erhalten, ist mit 1:1,6 Millionen als gering einzuschätzen (78).

Gefriergetrocknete Allotransplantate werden in mineralisierter Form (FDBA = freeze-dried bone allograft) und in demineralisierter Form (DFDBA = demineralized freeze-dried bone allograft) angeboten und haben beide osteokonduktive Eigenschaften (79).

2.2.4 Autogene Knochentransplantate

Die Nachteile autogener Knochentransplantate liegen in der Entnahmemorbidität und der hohen Resorptionsrate autogener Knochentransplantate (7,85-87).
Beim Vergleich der embryonalen Herkunft autogener Knochentransplantate konnte im Tiermodell nachgewiesen werden, dass membranöser Knochen im Vergleich zu enchondralem eine niedrigere Resorption zeigt (88-90). Als Ursache für dieses Phänomen ist die verzögerte Vaskularisation des membranösen Knochens zu sehen (91).

2.3 Spenderregionen autogener Knochentransplantate

In den folgenden Abschnitten werden die unterschiedlichen autogenen Spenderregionen mit ihren jeweiligen Vor- und Nachteilen vorgestellt. Als gängige extraorale Spenderregionen dienen die Crista iliaca, die Tibia und die Schädelkalotte. Als intraorale Spenderregionen werden im Unterkiefer vor allem die Unterkiefer symphyse, der Ramus mandibulae, der Corpus mandibulae, der Processus coronoideus und die Retromolarregion verwendet. Entnahmestellen im Oberkiefer sind die Tuberositas maxillae und die Crista zygomaticoalveolaris (Abb. 1). Die in den nächsten Abschnitten genannten möglichen Knochenvolumina der verschiedenen Spenderregionen sind aufgrund unterschiedlicher Untersuchungsansätze nicht direkt vergleichbar.
2.3.1 **Crista iliaca**

Der chirurgische Zugangsweg zur Crista iliaca kann entweder von anterior oder posterior in Allgemeinnarkose oder in Spinalanästhesie erfolgen. Bei der Entnahme von posterioren Beckenkammtransplantaten kann eine größere Menge an Knochen gewonnen werden, jedoch muss hierbei intraoperativ eine zeitaufwändige Umlagerung des Patienten erfolgen (102,103). Die verfügbaren Knochenvolumina wurden von *Kessler et al.* für anteriore Beckenkammtransplantate im Durchschnitt mit 9 cm^3 und für posteriore Beckenkammtransplantate mit $25,5 \text{ cm}^3$ bemessen (104). Zudem konnte in einer schwedischen Studie von *Dahlen* 2011 nachgewiesen werden, dass die Alveolarkammrekonstruktion mit einem Transplantat aus der Crista iliaca im Vergleich zum Einsatz von DFDBA mit einem längeren Krankenhausaufenthalt und somit größerem wirtschaftlichen Aufwand verbunden ist (105).

Neben den allgemeinen Operationsrisiken wie Hämatom- und Serombildung, postoperativen Wunddehiszenzen, Infektionen und Vernarbungen besteht bei der Beckenkammtransplantation das Risiko von Parästhesien in der Entnahmeregion sowie Abdominalhernien (106). Weitere mögliche Komplikationen stellen beim anterioren Zugang Beckeninstabilitäten bis hin zur Fraktur, Darmverschluss (Ileus) und chronische
2.3.2 Tibia

Die Knochenentnahme erfolgt entweder über einen lateralen oder medialen Zugang, wobei der mediale bevorzugt wird, da hierbei weniger anatomische Strukturen verletzt werden können (113,114). Die Knochenmenge der proximalen Tibia liegt bei 25 ml unkomprimierten spongiösen Knochens (110). Auf 3-D-Computertomographien konnte von Wang et al. eine Fläche von 127 cm² gemessen werden (115).

Als typische postoperative Komplikationen des Eingriffs werden auch hier Frakturen des Tibiaplateaus, Gangstörungen, Parästhesien in der Entnahmeregion (106,116-118), sowie das Auftreten einer Osteomyelitis aufgeführt (119).

2.3.3 Schädelkalotte

2.3.4 Unterkiefer symphyse

Im Vergleich zu anderen intraoralen Knochentransplantaten kann von der Unterkiefersymphyse der größte Anteil von Knochen entnommen werden (100,132). Liegt ein entzündungsfreies Parodontium in der Unterkieferfront vor, erfolgt der Zugang über eine intrasulkuläre Schnitt. Bei Knochendefekten oder parodontalen Entzündungen wird ein vestibulärer Schnitt gewählt (100). In mehreren Studien wurde die Knochenmenge der Symphyse vermessen, erwähnt werden sollen hier jedoch nur die Studien, die auf CT-Analysen (Computertomographie) basieren (98,133,134). Yavuz untersuchte 2009 die Knochenmenge auf der 3-D-Darstellung von Cone-Beam-Computertomographie-Datensätzen (CBCT) und konnte ein Knochenvolumen mit den Maßen von 38 mm x 11 mm x 7 mm messen (135). 2010 folgte eine Studie von Verdugo, die das Knochenvolumen auf präoperativen Computertomographien von 1,4 ml mit dem später gewonnenen intraoperativen Volumen von 2,3 ml verglich (136). Einen genauen Grund für die Volumenabweichungen nannten die Autoren dabei nicht.

Typische Komplikationen, die nach Entnahme aus der Kinnregion auftreten können, sind Dysästhesien, Hypo- und Hyperästhesien des Nervus alveolaris inferior sowie ein Verlust der Pulpensensibilität der Zähne 35-45 (137-141).
2.3.5 Ramus mandibulae und Corpus mandibulae

Die Dimensionen des zu entnehmenden Transplantats von Ramus und Corpus mandibulae wurden von Güngörmüs in In-vitro-Studien vermessen, dabei zeigte sich beim Corpus mandibulae eine durchschnittliche horizontale Länge von 35,1 mm mit einer durchschnittlichen vertikalen Länge von 19,1 mm und beim aufsteigenden Ramus eine Fläche von $495,13 \text{mm}^2$ (134,144). Verdugo verglich 2009 das Volumen des Ramus mandibulae auf Computertomographien und anhand intraoperativer Messungen. Dabei zeigte sich ein niedrigeres Volumen (0,8 ml) auf den Computertomographien als auf den intraoperativ gewonnenen Messungen (2,5 ml), wobei aber keine Gründe dargestellt wurden (145).

Typische Komplikationen, die nach der Entnahme auftauchen können, sind Parästhesien des Nervus mentalis, Kieferfrakturen, sowie Kieferklemmen (100). Vergleicht man die Entnahmemorbidität der Unterkiefer symphyse und des Ramus mandibulae, zeigen sich beim Ramus mandibulae erwartungsgemäß bessere Resultate bezogen auf Sensibilitätsstörungen im Kinnbereich (132,140,146).

2.3.6 Processus coronoides

Der Processus coronoides wurde 1969 von Youmans als autogenes Spenderareal bei einer Unterkieferrekonstruktion eingeführt (147). Mittlerweile wird es bei paranasalen
Augmentationen, Orbitarekonstruktionen, sowie zur Rekonstruktion bei Kiefergelenkankylosen eingesetzt (148-152).

Die Knochenentnahme aus dem Processus coronoideus stellt eine anspruchsvolle chirurgische Aufgabe dar, wobei der Zugang über einen vertikalen Schnitt erfolgt. Dieser beginnt hinter dem letzten Molar und führt über den aufsteigenden Unterkieferast bis zur Mitte desselben. Intraoperativ muss der Nervverlauf des Nervus alveolaris inferior beachtet werden, um eine Nervschädigung ausschließen zu können (147,151,153). Bevor der Knochen entnommen wird, muss der Musculus temporalis vom Knochen abgelöst werden; dies kann postoperativ zu langwierigen Mundöffnungsschwierigkeiten für den Patienten führen(100).

Ein Vorteil besteht in der gebogenen Form des Processus coronoideus, die oftmals eine weitere Bearbeitung des Knochenstücks unnötig werden lässt (151,153). Nach einer In-vitro-Studie von Choung beträgt das verfügbare Knochenvolumen für eine paranasale Augmentation 18 x 17 x 5 mm (148).

2.3.7 Retromolarregion

Die Retromolarregion wird zur Orbitarekonstruktion, sowie für Alveolarkammdefekte eingesetzt (139,154-157). Die intraoperative Belastung wird von den Patienten im Vergleich zur Entnahme aus der Symphyse als gering eingestuft (155). Ein Vorteil besteht darin, dass eine Knochenentnahme oftmals parallel zur Weisheitszahnextraktion durchgeführt werden (158,159). In einer In-vitro-Studie an 52 Human-Schädelpräparaten wurde von Sauvigne et al. ein Knochenvolumen von 1 ml gemessen (160). Auf 3-D-CT Datensätzen wurde 2010 die Knochenmenge der Retromolarregion erfasst, dabei betrug die Knochenfläche abhängig vom Untersucher 8,12 cm² beziehungsweise 8,32 cm² und das Knochenvolumen 0,79 cm³ beziehungsweise 0,85 cm³ (161). In einer weiteren Studie konnte eine mittlere Breite von 14,2 mm ermittelt werden (155).

2.3.8 **Tuberositas maxillae**

2009 wurde die Tuberositas maxillae von Tolstunov als autogenes Blocktransplantat eingeführt (162). Knochen der Tuberositas maxillae wird zur Alveolarkammrekonstruktion, zur Rekonstruktion von Knochendefekten im anterioren Oberkiefer oder zur Sinusbodenelevation genutzt (163-165).

Die verfügbare Knochengröße reicht für einen Alveolarkammdefekt von 1-2 cm in der Länge, wurde aber noch nicht auf weiteren Studien eingeschätzt (162). Bei der Entnahme der Tuberositas wurden bis auf Hämatome und Schwellungen noch keine Komplikationen beobachtet (146,163).

2.4 **Crista zygomaticoalveolaris**

2.4.1 **Anatomische Grundlagen**

Aufbau des Mittelgesichts

Gemeinsam mit dem Stirnnasenpfeiler (nasomaxillärer) und dem Flügelgaumenpfeiler (pterygomaxillärer) bildet die Crista zygomaticoalveolaris als Teil des Jochbeinpfeilers (zygomaticomaxillärer) einen der drei vertikalen Stützpfeiler des Mittelgesichts am Übergang des Os zygomaticum zur Maxilla oberhalb des ersten Molars (Abb. 2)(166-168).

Sinus maxillaris und Schneiderische Membran

Die Crista zygomaticoalveolaris bildet einen Teil der lateralen Wand der größten Nasennebhöhle, der Kieferhöhle (Sinus maxillaris) (Abb. 3).

Größe und Gestalt der Kieferhöhle können von Mensch zu Mensch stark variieren. Die Form gleicht der einer Pyramide, wobei die Basis zur Nase und die Spitze gegen den Processus zygomaticus der Maxilla ausgerichtet ist (175). Das Dach der Kieferhöhle
entspricht dem Orbitaboden, in dem der Nervus infraorbitalis verläuft. Die mediale Wand grenzt im kra
nalen Abschnitt an den oberen, im kaudalen Abschnitt an den unteren Nasengang. Kaudal der mittleren
er Nasenmuschel befindet sich das Ostium naturale, welches dorsal in das Infundibulum ethmoidale mündet
den Sekretabfluss aus der Kieferhöhle in den mittleren Nasengang gewährleistet (176).

Die Kieferhöhle wird durch eine dünne Mukosa aus mehrreihigem zilienntragendem Flimmerepithel ausgekleidet, die als Schneiderse Membran bezeichnet wird. Die Dicke der Schneiderse Membran beträgt durchschnittlich 0,8 mm (176). Sie stellt eine wichtige Barriere- und Schutzfunktion der Kieferhöhle dar. In der Lamina propria befinden sich Becherzellen und seromuköse Drüsen, die die Membran feucht halten und mit Hilfe der Zilien für einen Abtransport von Schleim und Pus durch das Ostium naturale sorgen. Die Funktion der Kieferhöhle kann nur durch eine intakte Sinusmembran aufrechterhalten werden (177).

Die Knochenentnahme aus der Crista zygomaticoalveolaris stellt bezüglich der Präparation des Knochenfensters und der Mobilisierung des Knochenstücks eine anspruchsvolle Aufgabe dar. Um die Sinusmembran zu schützen, findet häufig die Piezochirurgie Anwendung (178-181). Hierbei arbeiten die ultraschallgesteuerten Instrumente auf einem für die Knochenosteotomie spezifischen Frequenzbereich zur optimalen Schonung des Weichgewebes (181).

Aufgrund unterschiedlicher Anatomie, variabler Dicke und Beschaffenheit der Sinusmembran wurde dennoch in bis zu 28% (174) bis 31% der klinischen Eingriffe (182) eine Verletzung derselben beobachtet.

Da das Knochenfenster und die perforierte Schneidersche Membran flächig mit dem Mukoperiostlappen abgedeckt wird, wurden bisher keine klinischen Folgen, wie zum Beispiel eine Sinusitis, beobachtet (182). Die Sinusmembranperforation wurde lediglich mit einer postoperativen Antibiotikaeinnahme therapiert (174).

Nervus infraorbitalis

Der Nervus infraorbitalis liegt kranial der Crista zygomaticoalveolaris; er tritt durch die Fissura orbitalis inferior in die Orbita ein und verlässt diese durch den Canalis infraorbitalis im Dach der Kieferhöhle, um anschließend durch das Foramen infraorbitale auszutreten (Abb. 3). Als Hauptast des Nervus maxillaris versorgt er sensibel das untere Augenlid, die seitliche Nase und die Oberlippe (183,184). Eine Verletzung des Nervus infraorbitalis kann

2.4.2 **Klinische Studien**

Seit 2005 wird die Crista zygomaticoalveolaris von *Gellrich et al.* als zusätzliches intraorales Spenderarreal aufgeführt (16,18,182,185). Die Region zeichnet sich durch die räumliche Nähe zum Operationsgebiet im Oberkiefer aus und zudem ist der Knochen mechanisch gut zu bearbeiten (18). Durch die konvexe Krümmung der Crista zygomaticoalveolaris werden bei der Rehabilitation verlorengegangener Konturen im anterioren ästhetischen Bereich sekundäre Weichgewebsaufbauten mit freien Bindegewebstransplantaten unnötig (18,28,186-188).

Abb. 4: Schematische Darstellung zur Knochenentnahme aus der Crista zygomaticoalveolaris

a) Empfängerregion mit Knochendefekt im Frontzahnbereich
b-c) Schnittführung
d) Spenderregion
e) Osteotomie mit Piezochirurgie
f) Knochenentnahme
g) Schneiderische Membran
h) Entnahme von Knochenspänen mit einem Knochenschaber
i) Empfängerregion
j) Knochenspäne in der Empfängerregion
k) Knochentransplantat mit Osteosyntheseschrauben
l) Abdeckung mit resorbierbarer Membran

Eigene Darstellung modifiziert nach klinischen Bildern von (190)
2.4.3 Bisherige Studien zur Anatomie der Crista zygomaticoalveolaris

Hervorzuheben ist eine Studie von Yates et. al., die in einem Vergleich unterschiedlicher intraoraler Spenderregionen mit einem Fokus auf der entnehmbaren Knochenmenge unter anderem auch die Crista zygomaticoalveolaris untersuchte (191). Zur besseren Vergleichbarkeit der einzelnen Regionen wurden an 59 Human-Schädelpräparaten Knochenvolumen, Fläche und die Dicke an einem Punkt ermittelt. Bei der Crista zygomaticoalveolaris stellten die Autoren eine Fläche von 1,67 cm², eine maximale Dicke von 2,1 mm sowie ein Volumen von 0,11 ml fest (191). Im Vergleich zu den anderen Knochenregionen wurde die Knochenmenge als gering eingestuft (191).

Die koronare Krümmung der Transplantatregion wurde in zwei Studien bisher nur qualitativ beschrieben. Haase et. al. stellten in ihrer In-vitro-Studie zur Formung von Osteosyntheseplatten bei Jochbeinfrakturen eine hohe Variation der koronaren Krümmung fest (192). Aparicio et al. konnte im Zusammenhang mit der Implantation von Zygomaimplantaten auf CBCT-Aufnahmen und klinischen Aufnahmen feststellen, dass 49% eine leicht konkave Kieferhöhlenwand aufwiesen, während 15% nahezu keine Krümmung und 9% eine starke Krümmung zeigten (193).
3. Fragestellung

Die Spenderregion der Crista zygomaticoalveolaris zeichnet sich neben den oben genannten Vorteilen durch ihre gute Einsetzbarkeit und die räumliche Nähe zum Operationsgebiet im Oberkiefer aus (18,174). Insbesondere die konvexe Knochenmorphologie des Knochentransplantats, die eine realitätsnahe Nachahmung der Juga alveolaria im anterioren Oberkiefer ohne weitere Bearbeitungsmaßnahmen ermöglicht, wurde in mehreren Studien hervorgehoben (16,18,182,189).

Im Rahmen der vorliegenden Arbeit soll daher erstmals umfassend anhand von Human-Schädelpräparaten und CT-Datensätzen die Anatomie der Crista zygomaticoalveolaris analysiert werden. Der Fokus soll hierbei auf der Ermittlung wesentlicher anatomischer Dimensionen (koronare und horizontale Krümmung, Knochendicke, kranio-kaudale
Länge), sowie der Erfassung des Abstandes zum Foramen infraorbitale, zur besseren Einschätzung der Entnahmemorbidität liegen.
4. Material und Methoden

1. Teil
Qualitative und quantitative CT-Analyse

100 Cristae auf Computertomographien

virtuelle Hebung eines Knochenvolumens in einer standardisierten Größe
ventro-dorsale Breite: 12 mm

Abb. 5: Schematische Darstellung zum Aufbau der Arbeit

2. Teil
Praktische Überprüfung an 10 mazerierten Schädelpräparaten

Knochentransplantat: ventro-dorsale Breite: 12 mm kranio-kaudale Länge aus Teil 1

Knochenentnahme
Material und Methoden

4.1 Analyse des Knochentransplantats auf Computertomographien

4.1.1 Übersicht über Aufbau und Gestaltung

In diesem Teil der Studie wurden 100 Cristae auf Computertomographien der Mittelgesichtsregion ausgewertet, die aus der Datenbank der Medizinischen Hochschule Hannover stammen. Die Computertomographien entstanden im Zeitraum von Dezember 2005 bis Mai 2010 in unterschiedlichen Kliniken und Praxen (Abb. 6) und wurden an verschiedenen Spiral-Computertomographen durchgeführt (Abb. 7).

<table>
<thead>
<tr>
<th>Ort (Abkürzung)</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH Hannover Neurad</td>
<td>Institut für Diagnostische und Interventionelle Neuroradiologie der MHH</td>
</tr>
<tr>
<td>MH Hochschule Hann</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>MH Hann Rad 1</td>
<td>Institut für Radiologie der MHH</td>
</tr>
<tr>
<td>Doctors Hospital</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>All_Mod</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>Gemeinschaftspraxis D</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>Rad. Gemeinschaftspraxis</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>Radiolog. GP D</td>
<td>keine Angaben verfügbar</td>
</tr>
<tr>
<td>Conradiad Fleethof</td>
<td>Conradiad Radiologische Praxen</td>
</tr>
<tr>
<td>Drs Berg/Koltze</td>
<td>Dr. Berg, Dr. Koltze, Dr. Thelen</td>
</tr>
<tr>
<td>Diranuk Bielefeld</td>
<td>Diranuk GbR</td>
</tr>
<tr>
<td>Dr. Flimm Wolfsburg</td>
<td>Dr. Flimm</td>
</tr>
<tr>
<td>Dr. Korten und Partner</td>
<td>Dr. Korten und Partner</td>
</tr>
<tr>
<td>Dres Urbapahmeier</td>
<td>Dres. Urban, Pahmeier, Baus, Rudolf</td>
</tr>
<tr>
<td>Dr. Grüne/Majewski Tri</td>
<td>Dr. Grüne/Majewski/Prawitz</td>
</tr>
<tr>
<td>Praxis am Marstall</td>
<td>Röntgenpraxis am Marstall</td>
</tr>
<tr>
<td>Drs Rautmann Pol</td>
<td>Dres. Rautmann und Polley</td>
</tr>
<tr>
<td>Rad Praxis Langen</td>
<td>Radiologische Praxis Langen</td>
</tr>
<tr>
<td>Radiologie am Raschplatz</td>
<td>Radiologie am Raschplatz</td>
</tr>
</tbody>
</table>

Abb. 6: Ort der CT-Aufnahmen

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Geräte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiral General Electric Company</td>
<td>Light Speed 16, Light Speed VCT, Bright Speed</td>
</tr>
<tr>
<td>Fairfield, CT, USA</td>
<td></td>
</tr>
<tr>
<td>Firma Philips</td>
<td>brilliance 16, Philips CT Aura, Mx 8000 IDT 16</td>
</tr>
<tr>
<td>Amsterdam, Niederlande</td>
<td></td>
</tr>
<tr>
<td>Firma Siemens</td>
<td>Emotion 16, Emotion 6, Sensation 4, Somatom Plus 4, Volume Access</td>
</tr>
<tr>
<td>Berlin/München, Deutschland</td>
<td></td>
</tr>
<tr>
<td>Toshiba Corporation</td>
<td>Asteion, Aquilion One</td>
</tr>
<tr>
<td>Tokio, Japan</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 7: Geräte und Hersteller der Computertomographen

Anhand der vorhandenen Seitenzähne im Oberkiefer der zu untersuchenden Patienten wurde der Zahnstatus dokumentiert und in die Gruppen vollbezahl (n = 62), teilbezahl (n = 28) und unbezahl (n = 10) eingeteilt. Die Analyse der Datensätze erfolgte im Knochenfenster und lag im Durchschnitt bei 774 /848 Hounsfield-Einheiten. Die mittlere Schichtdicke der zur Auswertung herangezogenen Datensätze befand sich bei 0,71 mm (0,25-1,25 mm).

4.1.2 3-D-Diagnose- und Therapieplanungssoftware VoXim®

Mit VoXim® (Version 5.6.1) können CT–Datensätze über ein Hounsfieldfenster und eine Schwellwertsegmentierung in fest definierten Standardwerten für Knochen, Abdomen und Mediastinum in transversalen, sagittalen, koronaren und dreidimensionalen Schnitten dargestellt werden. Im Modul Skeleton® der Software lassen sich lineare Messungen und Winkelmessungen durchführen. Außerdem können Punkte und Ebenen auf den Schnitten definiert werden.

4.1.3 Durchführung der Messungen

Durch manuell festgelegte Ebenen wurden die Grenzen des Knochenschilds bestimmt. Zunächst wurde die Frankfurter Horizontale in der 3-D-Darstellung positioniert. Diese Ebene wurde senkrecht zur Knochenfläche der lateralen Kieferhöhlenwand auf den koronaren Schnitt gelegt. Die Markierung der Obergrenze des Knochenstücks erfolgte durch Definition einer Ebene durch den Umschlagspunkt des Os zygomaticum zur
Maxilla. Als Referenz für die Untergrenze des Knochenstücks wurde eine Ebene an der kranialsten Wurzelspitze des ersten oder zweiten Molaren des Oberkiefers mesio-vestibulär positioniert. Bei unbezahntem Kiefer wurde die Untergrenze am Schnittpunkt der lateralen Kieferhöhlenwand zum Kieferhöhlenboden gesetzt (Abb. 8).

Die Obergrenze und Untergrenze wurden parallel zur Frankfurter Horizontalen ausgerichtet. Aufbauend auf Aussagen routinierter Anwender der Methode wurde die gesamte Breite des Knochenvolumens auf 12 mm festgelegt (Gellrich, Nils-Claudius, persönliche Mitteilung, 2008). Dabei wurden jeweils 6 mm ventral und 6 mm dorsal von dem Umschlagspunkt der Crista senkrecht zur Ober- und Untergrenze die Seitenebenen des Knochenstücks festgesetzt (Abb. 9).

Abb. 9: Schematische Zeichnung zur Darstellung der Grenzen des Transplantats (blau) Frankfurter Horizontale (rot), Umschlagspunkt (grün)
Durch das Legen einer Ebene (Grenzebene) in ventro-dorsaler Richtung parallel zur Ober- und Untergrenze, erfolgte eine Einteilung des Knochenstücks in einen jeweils gleich großen kranialen und kaudalen Abschnitt. Im Segmentierungsmodus konnte das Knochenstück im Folgenden in den einzelnen Schichten des Knochenbereichs markiert und später über den Reponierungsmodus in den zweidimensionalen und dreidimensionalen Darstellungen sichtbar gemacht werden (Abb. 10).

Abb. 10: Schematische Darstellung zur Reponierung des Knochenvolumens mit 12 mm ventro-dorsaler Richtung

4.1.4 Vermessung der koronaren Krümmung

Material und Methoden

4.1.5 Vermessung der horizontalen Krümmung

4.1.6 Vermessung der Knochendicke

Für die Untersuchung der Knochendicke wurde jeweils eine neue Ebene in ventro-dorsaler Richtung durch die Mitte des kranialen und kaudalen Abschnitts gelegt. Diese wurden parallel zur Ober- und Untergrenze des Knochenvolumens ausgerichtet. Die Messstellen wurden an 15 Punkten in der 3-D-Darstellung definiert. Es befanden sich jeweils fünf Punkte an der ventralen, an der dorsalen Seitenebene und an der Mittelebene durch das Knochenvolumen. Die Punkte wurden an der Obergrenze, an der Teilungsebene in ventro-dorsaler Richtung (quer) durch den kranialen Abschnitt, der Grenzebene, der
Teilungsebene durch den kaudalen Abschnitt und an der Untergrenze positioniert. Die Messungen wurden in der 3-D-Darstellung durchgeführt. Die Messlinie erstreckte sich auf den Einteilungsebenen (s. oben) oder an der Obergrenze des kranialen Abschnitts oder der Untergrenze des kaudalen Abschnitts (Abb. 13).

Abb. 13: Schematische Darstellung zur Messung der Knochendicke (rot) an 15 Punkten (ventral, medial, dorsal) in mediodiagonaler Richtung

4.1.7 Vermessung des Abstands des Transplantats zum Foramen infraorbitale

Abb. 14: Messung des Abstands zum Foramen infraorbitale (rot) in mm in der 3-D-Darstellung
4.1.8 Vermessung der kranio-kaudalen Länge

Zudem wurde die gesamte kranio-kaudale Länge des Knochenstücks an der Mittelebene des Knochenstücks auf der medialen Seite in der 3-D-Darstellung gemessen (Abb. 15).

4.2 Praktische Überprüfung an Human-Schädelpräparaten

4.2.1 Übersicht über Aufbau und Gestaltung

Im zweiten Teil der Studie erfolgte eine weitere Untersuchung der Crista zygomaticoalveolaris an zehn mazerierten Schädelpräparaten. Die Präparate stammten aus dem Institut für Anatomie der Medizinischen Hochschule in Hannover (Leiter: Prof. Dr. med. M. Ochs).

Bei neun der zehn Präparate gingen während der Mazeration die Zähne verloren, der Zahnstatus war aber anhand der Alveolen zu erkennen. Der Zahnstatus der Human-Schädelpräparate wurde in die Gruppen vollbezahnt (n = 1), teilbezahnt (n = 5) und unbezahnt (n = 4) eingeteilt. Die Knochenentnahme sowie die Durchführung der Messungen erfolgten im Präparationsraum des Anatomischen Instituts. Alle Messungen wurden mit einer Kamera (EOS 20 D, Firma Canon, Tokio, Japan) dokumentiert.

4.2.2 Durchführung der Messungen

Zunächst wurde der Umschlagspunkt des Os zygomaticum zur Maxilla auf den Knochenpräparaten bestimmt und mit einem Bleistift markiert (Abb. 16).

Die Knochenosteotomie gemäß der Begrenzungen erfolgte rotierend mit einer Lindemannfräse (Firma Komet, Lemgo, Deutschland) und mit 40,0000 Umdrehungen/Minute. Für die weiteren Messungen wurde auf dem Knochenstück an der ventralen und dorsalen Seite eine Strecke von 6,5 mm mit einem starren Lineal abgemessen. Beide Punkte wurden zur Grenzlinie verbunden und teilten das Knochenstück in einen gleich großen
kranialen und kaudalen Abschnitt. Außerdem wurde medial die Mittellinie eingezeichnet (Abb. 18).

Abb. 18: Mediale und laterale Ansicht des Knochentransplantats mit eingezeichneten Grenzlinien und Mittellinie und Maßangabe in mm

4.2.3 Vermessung der koronaren Krümmung

Die Messung der Innen- und Außenkrümmung erfolgte für die koronare Krümmung in kranio-kaudaler Richtung an der Mittellinie. Dabei wurde jeweils ein Drahtstück (Durchmesser 1 mm; Firma Conrad Electronic, Hirschau, Deutschland) der Knochenoberfläche der entsprechenden Einteilungslinie (Mittellinie, Obergrenze, Untergrenze, Grenzlinie) folgend angepasst und in der richtigen Länge gekürzt. Der Mittelpunkt der Linie wurde auf dem Draht gekennzeichnet. Der Mittelpunkt definierte den Scheitelpunkt des Winkels, die Endpunkte des Drahts die jeweiligen Schenkelpunkte. Der Winkel wurde anschließend mit einem Winkelmesser (Zeichentechnik GmbH, Geretsried, Deutschland) ermittelt (Abb. 19).

Abb. 19: Messung der koronaren Krümmung: Innenkrümmung (rot), Außenkrümmung (blau)
4.2.4 Vermessung der horizontalen Krümmung

Die Innen- und Außenkrümmung der horizontalen Krümmung wurden jeweils in anterio-posteriorer Richtung an der Grenzlinie, an der Obergrenze und an der Untergrenze des Knochentransplantats gemessen. Dabei war das Vorgehen analog zur Messung der koronaren Krümmung (Abb. 20).

![Abb. 20: Messung der horizontalen Krümmung: Innenkrümmung (rot), Außenkrümmung (blau)](image)

4.2.5 Vermessung der Knochendicke

Für die Untersuchung der Knochendicke wurde jeweils eine neue Linie in ventro-dorsaler Richtung durch die Mitte des kranialen und kaudalen Abschnitts auf das Knochenstück medial und lateral angezeichnet (Abb. 21).

![Abb. 21: Zusätzliche Einteilungslinien auf dem Knochentransplantat](image)

Durch die Schnittstellen mit den anderen Einteilungslinien entstanden 15 Messpunkte, jeweils fünf an der ventralen und medialen Seite, sowie an der Mittellinie.

Die Dickenmessung erfolgte mit einem Tasterzirkel (Omnident Dental-Handels GmbH, Rodgau, Deutschland). Dabei wurde überprüft, ob sich der Tasterzirkel medial und lateral genau auf dem markierten Punkt befand.
4.2.6 Vermessung des Abstands zum Foramen infraorbitale
Mit einem starren Lineal (Firma Rumold, Stuttgart, Deutschland) wurde der kürzeste Abstand vom Unterrand des Foramen infraorbitale zur Obergrenze der Crista zygomaticoalveolaris gemessen.

4.3 Zusammenfassung der Ergebnisse
Für die Zusammenfassung der Ergebnisse wurden anhand der Maxima und Minima drei Merkmalsbereiche anhand der CT-Analyse definiert, um später die Daten klassifizieren zu können und die Ergebnisse der Human-Schädelpräparate diesen Klassifikationen zuzuordnen.

4.3.1 Statistische Analyse
Die statistische Auswertung der Messergebnisse wurde mit dem Tabellenkalkulationsprogramm Microsoft Excel® Version 2008 durchgeführt. Bei der Analyse der Messwerte der CT-Datensätze und der Human-Schädelpräparate wurden jeweils Mittelwerte und Standardabweichungen für die verschiedenen Merkmale gebildet.

Um die klinische Signifikanz einschätzen zu können, wurden bei der CT-Analyse um die berechneten Mittelwerte der Stichprobe zusätzlich 95%-Konfidenzintervalle (KI) gebildet.

Die grafische Darstellung der Ergebnisse der CT-Analyse und der Human-Schädelpräparate erfolgte mit Hilfe von Boxplotdiagrammen und Histogrammen.
5. Ergebnisse

In diesem Kapitel werden die Ergebnisse der durchgeführten Untersuchungen (Kapitel 4.1.4-4.1.8, 4.2.3-4.2.6 sowie 4.3) beschrieben und graphisch dargestellt.

5.1 Ergebnisse der CT-Analyse

5.1.1 Koronare Krümmung des Transplantats

Die koronare Krümmung jedes Transplantats wurde innen und außen gemessen. Beim Vergleich der beiden Durchschnittswerte zeigte sich kaum ein Unterschied (Innenkrümmung 167,2°, Außenkrümmung 165,0°) (Abb. 22).

<table>
<thead>
<tr>
<th>kranio-kaudal</th>
<th>Innenkrümmung</th>
<th>Außenkrümmung</th>
<th>Innen- und Außenkrümmung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>167,2 ± 6,9</td>
<td>165,0 ± 7,6</td>
<td>166,1 ± 6,0</td>
</tr>
</tbody>
</table>

Abb. 22: Deskriptive statistische Analyse (Mittelwert ± Standardabweichung) der koronaren Krümmung in Grad

Innen- und Außenkrümmung wurden zu einem Durchschnittswert zusammengefasst: dabei erstreckten sich die Werte in einem Bereich von 144,8° bis zu 178,0° (Abb. 23). Das arithmetische Mittel der koronaren Krümmung in kranio-kaudaler Richtung lag bei 166,1° (KI: 164,9 bis 167,3°).

![Abb. 23: Krümmung koronar gesamt in kranio-kaudaler Richtung]

5.1.2 Horizontale Krümmung des Transplantats

<table>
<thead>
<tr>
<th>Stelle</th>
<th>Innenkrümmung</th>
<th>Außenkrümmung</th>
<th>Innen- und Außenkrümmung</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>kranial</td>
<td>103,6 ± 14,3</td>
<td>89,3 ± 13,4</td>
<td>96,4 ± 12,1</td>
<td>124,4 ± 8,9</td>
</tr>
<tr>
<td>medial</td>
<td>136,3 ± 12,5</td>
<td>122,4 ± 13,1</td>
<td>129,4 ± 11,4</td>
<td></td>
</tr>
<tr>
<td>kaudal</td>
<td>150,0 ± 12,0</td>
<td>145,2 ± 12,3</td>
<td>147,6 ± 10,5</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 24: Deskriptive statistische Analyse (Mittelwert ± Standardabweichung) in Grad der horizontalen Krümmung des Knochenvolumens an verschiedenen Stellen

Bei Vergleich der unterschiedlichen Messstellen (kranial, medial, kaudal) zeigte sich mit 87,8° bis 154,4° die größte Streuung im medialen Messbereich (Abb. 25).

![Diagramme](image1)

Abb. 25: Horizontale Krümmung in ventro-dorsaler Richtung in Grad abhängig vom Ort der Messung

Der Mittelwert der horizontalen Krümmung lag gesamt bei 124,4° (KI: 122,7-124,4°), die Spannweite reichte von 99,8° bis 147,2° (Abb. 26).

![Diagramme](image2)

Abb. 26: Horizontale Krümmung in ventro-dorsaler Richtung in Grad gesamt

5.1.3 Knochendicke des Transplantats

Die Knochendicke des Knochentransplantats wurde an 15 Punkten jeweils ventral, medial und kaudal gemessen. Die ermittelten Durchschnittswerte der verschiedenen Messpunkte lagen zwischen 3,2 mm (Punkt 6) und 1,3 mm (Punkt 7). Hervorzuheben ist Punkt 6, der von allen das größte Knochenangebot lieferte (3,2 mm) (Abb. 27).
Bei Zusammenfassung der Werte in Abhängigkeit von der Messebene zeigte sich medial eine größere Knochendicke als lateral. Die größte Spannweite konnte im medialen Bereich ermittelt werden (0,9–4,2 mm) (Abb. 28).

Insgesamt konnte bei der CT-Analyse eine durchschnittliche Knochendicke von 1,4 mm (KI: 1,3–1,5 mm) errechnet werden, die von 0,7 mm bis zu 2,3 mm reichte (Abb. 29).
5.1.4 Abstand zum Foramen infraorbitale

Der Durchschnittswert des Abstands zum Foramen infraorbitale lag bei $13,9 \pm 2,2$ mm (KI: 13,5-14,3 mm). Dabei erstreckten sich die Werte von 10,1 mm bis zu 19,4 mm (Abb. 30).

![Abbildungen](image)

Abb. 30: Links: besonders kleiner Abstand zum Foramen infraorbitale (rot) von 10,1 mm Rechts: besonders großer Abstand zum Foramen infraorbitale (rot) von 19,4 mm

5.1.5 Kranio-kaudale Länge des Transplantats

Das Knochenstück erreichte im Durchschnitt eine kranio-kaudale Länge von $13,3 \pm 2$ mm (KI: 12,9- 13,7 mm). Eine Länge von 12,0 mm war am häufigsten vertreten, gefolgt von 13,0 mm (Abb. 31).

![Abbildungen](image)

Abb. 31: Längenverteilung in mm abhängig von der Anzahl in kranio-kaudaler Richtung

Abhängig vom Zahnstatus der zu untersuchenden Patienten zeigte sich in der Gruppe vollbezahl (n = 28) eine kranio-kaudale Länge von $13,3 \pm 2$ mm, bei den Teilbezahlten (n = 62) eine Länge von $13,2 \pm 2$ mm und bei der zahnlosen Gruppe (n = 10) eine Länge von $13,6 \pm 1,7$ mm.
5.2 Ergebnisse der Analyse der Human-Schädelpräparate

5.2.1 Koronare Krümmung des Knochenstücks

Die Durchschnittswerte der inneren und äußeren koronaren Krümmung des Knochenstücks wichen kaum voneinander ab (Innenkrümmung 155,1°, Außenkrümmung 155,5°) (Abb. 32).

<table>
<thead>
<tr>
<th>kranio-kaudal</th>
<th>Innenkrümmung</th>
<th>Außenkrümmung</th>
<th>Innen- und Außenkrümmung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>155,1 ± 16,5</td>
<td>155,5 ± 12,3</td>
<td>155,3 ± 13,5</td>
</tr>
</tbody>
</table>

Abb. 32: Deskriptive statistische Analyse (Mittelwert ± Standardabweichung) der koronaren Krümmung in Grad

Insgesamt konnte eine mittlere koronare Krümmung von 155,3° gemessen werden, die sich in einem Bereich von 131,0° bis zu 169,0° bewegte (Abb. 33).

5.2.2 Horizontale Krümmung des Knochenstücks

<table>
<thead>
<tr>
<th></th>
<th>Innenkrümmung</th>
<th>Außenkrümmung</th>
<th>Innen- und Außenkrümmung</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>kranial</td>
<td>116,0 ± 20,7</td>
<td>109,7 ± 11,5</td>
<td>114,1 ± 15,0</td>
<td>136,0 ± 7,0</td>
</tr>
<tr>
<td>medial</td>
<td>141,4 ± 15,0</td>
<td>138,8 ± 8,4</td>
<td>140,1 ± 10,4</td>
<td></td>
</tr>
<tr>
<td>kaudal</td>
<td>155,2 ± 11,2</td>
<td>160,6 ± 9,9</td>
<td>153,9 ± 10,0</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 34: Deskriptive statistische Analyse (Mittelwert ± Standardabweichung) der horizontalen Krümmung in Grad des Knochenstücks an verschiedenen Stellen

Bei Zusammenfassung der Innen- und Außenkrümmung war die größte Spannweite der Krümmung im kranialen Bereich festzustellen (95,0-136,0°) (Abb. 35).
Die mittlere horizontale Krümmung lag bei 136,0°, in einem Bereich von 125,2° bis 147,2° (Abb. 36).

5.2.3 Knochendicke des Knochenstücks

Die Durchschnittsdicke des Knochenbereichs reichte von 0,9 mm (Punkt 1) bis zu 2,2 mm (Punkt 6, 10, 15) (Abb. 37).

<table>
<thead>
<tr>
<th></th>
<th>Punkt 1</th>
<th>Punkt 2</th>
<th>Punkt 3</th>
<th>Punkt 4</th>
<th>Punkt 5</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ventral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,9 ± 0,7</td>
<td>1,1 ± 0,8</td>
<td>1,1 ± 0,7</td>
<td>1,6 ± 1,0</td>
<td>1,8 ± 1,2</td>
<td>1,5 ± 0,7</td>
</tr>
<tr>
<td>medial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,2 ± 0,6</td>
<td>1,7 ± 0,7</td>
<td>1,8 ± 1,3</td>
<td>1,7 ± 1,2</td>
<td>2,2 ± 1,8</td>
<td>1,9 ± 0,9</td>
</tr>
<tr>
<td>dorsal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1 ± 0,5</td>
<td>1,2 ± 0,6</td>
<td>1,5 ± 0,9</td>
<td>1,8 ± 1,4</td>
<td>2,2 ± 1,6</td>
<td>1,6 ± 0,9</td>
</tr>
</tbody>
</table>

Abb. 37: Deskriptive statistische Analyse (Mittelwert ± Standardabweichung) der Knochendicke in mm an verschiedenen Stellen

Im medialen Bereich zeigten sich wie in Teil 5.1.3 stets größere Werte als lateral davon (Abb. 38).
Die größte Streuung der Werte war im medialen Bereich festzustellen, das Minimum lag bei 0,9 mm das Maximum bei 4,2 mm. Die Werte waren im medialen und dorsalen Bereich linksverschoben, so dass mehr Werte im unteren Bereich lagen (Abb. 38).

Die Knochendicke der Human-Schädelpräparate lag durchschnittlich bei 1,6 mm (0,8-3,4 mm) (Abb. 39).

5.2.4 Abstand zum Foramen infraorbitale

Der Durchschnittswert des Abstands zum Foramen infraorbitale lag bei 12,3 ± 1,2 mm. Dabei erstreckten sich die Werte von 11,0 mm bis zu 14,0 mm.

5.2.5 Kranio-kaudale Länge des Knochenstücks

Bei sieben der Human-Schädelpräparate konnte die Osteotomie in den vorgegebenen Maßen von 13 mm kranio-kaudaler Länge ohne Probleme durchgeführt werden. Bei den Präparaten 1, 5 und 6 konnte die vorgegebene Länge von 13 mm nicht eingehalten werden. Bei Präparat 1 (Gruppe = vollbezahnt) reichte die Alveole des ersten Molaren bis in das Knochentransplantat hinein, so dass hier im kaudalen Bereich ein Stück Knochen fehlte.
Ergebnisse 41

(Abb. 40). Die kranio-kaudale Strecke vom Umschlagspunkt bis zum Schnittpunkt der kranialen Wurzelspitze zum Kieferhöhlenboden lag bei 11,0 mm.

Bei Präparat 5 (Gruppe = teilbezahnt) konnte eine kranio-kaudale Länge von 10,0 mm gemessen werden. Präparat 6 gehörte zu der Gruppe der zahnlosen Kiefer. Hierbei betrug die Strecke vom Umschlagspunkt bis zum Schnittpunkt laterale Kieferhöhlenwand zum Kieferhöhlenboden bei 5,0 mm (Abb. 40).

5.3 Zusammenfassung der Ergebnisse

5.3.1 Klassifikation der Merkmale

Koronare Krümmung

Die Werte der koronaren Krümmung der CT-Analyse reichten von minimal 144,8° bis maximal 178,0°. Dabei wurden jeweils drei verschiedene Bereiche für die koronare Krümmung festgelegt: eine starke Krümmung (130-146°), eine mittlere Krümmung (147-163°) und eine schwache Krümmung (160-180°) (Abb. 41).
Ergebnisse

Abb. 41: Grafische Darstellung der Bereiche in starke, mittlere und schwache koronare Krümmung

Horizontale Krümmung

Abb. 42: Grafische Darstellung der Bereiche in starke, mittlere und schwache horizontale Krümmung

Knochendicke

Die Aufgliederung der Knochendicke erfolgte in die Bereiche dünn (0,5-1,1 mm), mittel (1,2-1,8 mm) und dick (1,9-2,5 mm).

Abstand zum Foramen infraorbitale

Der Abstand zum Foramen infraorbitale wurde anhand der gemessenen Werte in die Bereiche klein (9-12 mm), mittel (13-16 mm) und groß (17-20 mm) eingeteilt.
Kranio-kaudale Länge

Es wurden drei Bereiche für die kranio-kaudale Länge definiert: ein kurzer Abstand (9-12 mm), ein mittlerer Abstand (13-16 mm) und ein langer Abstand (17-20 mm).

5.3.2 Vergleich der Ergebnisse in den verschiedenen Klassifikationen

Vergleich der koronaren Krümmung

Der größte Anteil (71%) lag bei den CT-Datensätzen im Bereich der niedrigen Krümmung. Nur 1% der Datensätze zeigte eine starke Krümmung bei 130-146°.

Bei Gegenüberstellung der Daten zeigt sich, dass alle Krümmungsbereiche der CT-Datensätze auch bei den Human-Schädelpräparaten gemessen werden konnten. Der kleinste Anteil lag bei beiden Analysen im stark gekrümmten Winkelbereich (Abb. 43).

![CT vs. Schädel Krümmung Diagramm](image)

Abb. 43: Verteilung der einzelnen Merkmale der koronaren Krümmung in %: CT-Analyse (links) und Schädelpräparate (rechts)

Vergleich der horizontalen Krümmung

Ein mittlerer Krümmungsgrad war mit 64% am häufigsten in der CT-Analyse repräsentiert. Nicht alle Krümmungsbereiche der horizontalen Krümmung konnten bei den Human-Schädelpräparaten gemessen werden. So zeigte keines der Präparate eine starke Krümmung. Eine schwache Krümmung war am stärksten bei den Human-Schädelpräparaten vertreten (80%). (Abb. 44).
Eine mittlere Knochendicke zeigte sich bei den CT-Datensätzen am häufigsten (67%). 9% der CT-Datensätze befanden sich im dicken Knochenbereich (1,9-2,5 mm). Alle Bereiche der Knochendicke wurden auch bei den Human-Schädelpräparaten gemessen. Ein dicker Knochencharakter zeigte sich bei den Human-Schädelpräparaten am häufigsten (40%) (Abb. 45).

Bei der CT-Analyse war der mittlere Abstand (13-16 mm) am häufigsten vertreten (58%). Bei den Human-Schädelpräparaten konnte kein großer Abstand (17-20 mm) zum Foramen infraorbitale gemessen werden. Ein kleiner Abstand von 9-12 mm war dabei am häufigsten vertreten (60%) (Abb. 46).
Vergleich der kranio-kaudalen Länge

Bei den CT-Datensätzen konnte eine lange Strecke (17-20 mm) nur bei 9% gemessen werden. Bei Gegenüberstellung der Messung der Human-Schädelpräparate konnten nicht alle Längenbereiche gemessen werden. Keines der Präparate zeigte eine lange kranio-kaudale Länge. Der größte Anteil war bei der CT-Analyse und den Human-Schädelpräparaten im mittleren Bereich (13-16 mm) vertreten (53%/80%) (Abb. 47).
Ergebnisse

Abstand Foramen infraorbitale (in mm)
- **klein:** 9-12: 27%
- **mittel:** 13-16: 58%
- **groß:** 17-20: 15%

Knochendicke (in mm)
- **dünn:** 0,5-1,1: 24%
- **mittel:** 1,2-1,8: 67%
- **dick:** 1,9-2,5: 9%

Abb. 48: Übersichtsdarstellung CT-Datensätze mit Klassifikationen

Krümmung koronar (in Grad)
- **stark:** 130-146: 1%
- **mittel:** 147-163: 28%
- **schwach:** 164-180: 71%

Kranio-kaudale Länge (in mm)
- **kurz:** 9-12: 38%
- **mittel:** 13-16: 53%
- **lang:** 17-20: 9%

Krümmung horizontal (in Grad)
- **stark:** 90-110: 6%
- **mittel:** 111-129: 64%
- **schwach:** 130-150: 30%

Abb. 48: Übersichtsdarstellung CT-Datensätze mit Klassifikationen
<table>
<thead>
<tr>
<th>Schädel</th>
<th>Crista</th>
<th>Krümmung kranial (in Grad)</th>
<th>Krümmung horizontal (in Grad)</th>
<th>Knochen dicke (in mm, zweifache Vergrößerung)</th>
<th>Abstand Foramen infraorbitale (in mm)</th>
<th>Länge cranial (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mittel</td>
<td>152</td>
<td>mittel 125,5</td>
<td>dünn 0,9</td>
<td>klein 12</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>mittel</td>
<td>160</td>
<td>schwach 138,8</td>
<td>dick 1,0</td>
<td>klein 12</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>mittel</td>
<td>156</td>
<td>mittel 127,8</td>
<td>dick 2</td>
<td>klein 11</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>schwach</td>
<td>169</td>
<td>schwach 138,2</td>
<td>dünn 0,9</td>
<td>mittel 13</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>stark</td>
<td>131</td>
<td>schwach 142,7</td>
<td>mittel 1,3</td>
<td>mittel 14</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>stark</td>
<td>132,5</td>
<td>schwach 142,3</td>
<td>dick 3,4</td>
<td>klein 11</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>schwach</td>
<td>169</td>
<td>schwach 134,3</td>
<td>mittel 1,3</td>
<td>klein 12</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>mittel</td>
<td>159</td>
<td>schwach 147,2</td>
<td>dick 2,1</td>
<td>mittel 13</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>mittel</td>
<td>159</td>
<td>schwach 130,7</td>
<td>mittel 1,4</td>
<td>mittel 14</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>schwach</td>
<td>165,5</td>
<td>schwach 133</td>
<td>dünn 0,8</td>
<td>klein 11</td>
<td>13</td>
</tr>
</tbody>
</table>

Abb. 49: Übersichtsdarstellung Schädelpräparate mit Klassifikationen
6. Diskussion
In diesem Kapitel wird zunächst die angewandte Methodik (Kapitel 3) reflektiert und hinsichtlich möglicher Einschränkungen diskutiert. Anschließend werden die Messergebnisse der untersuchten Parameter einzelnt interpretiert und in den der Literatur entnommenen Kenntnisstand eingeordnet. Das Kapitel endet mit der Diskussion der Bedeutung der erworbenen Ergebnisse für die Eignung der Crista zygomaticoalveolaris als intraorales Knochentransplantat und einen Ausblick auf mögliche weitere Studien.

6.1 Diskussion der Methode

Die Messergebnisse können allerdings durch die Schichtdicke sowie durch die gewählte Fensterbreite der Datensätze beeinflusst werden (212-214). Die Mehrzahl der CT-Datensätze (61%) zeigte eine Schichtdicke von 0,62 mm. Zur besseren Vergleichbarkeit wurde daher in der vorliegenden Arbeit bei jedem Datensatz immer das gleiche
Knochenfenster für die 3-D-Darstellung ausgewählt (Durchschnitt 774/848 Hounsfield-Einheiten).

Da bisher keine experimentellen systematischen Studien zur maximal möglichen Breite eines Transplantats der Crista zygomaticoalveolaris vorliegen, wurde eine Transplantatbreite von 12 mm als unveränderliche Größe festgelegt. Dies stellt eine Vereinfachung der Fragestellung dar, die jedoch zum einen eine bessere Vergleichbarkeit der Kennwerte gewährleistet und aufbauend auf Aussagen routinierter Anwender der Methode erfolgte.

Aufbauend auf den CT-Auswertungen wurden zehn Human-Schädelpräparate vermessen. Aufgrund der geringen Stichprobe ist der Vergleich der Analyse der Human-Schädelpräparate mit der Analyse der CT-Datensätze nicht statistisch beurteilbar. Die Ergebnisse der Human-Schädelpräparate sollten vielmehr die klinische Varianz der Crista
zygomaticoalveolaris über die vorangegangene quantitative CT-Auswertung hinaus für den Praktiker veranschaulichen.

6.2 Diskussion der Ergebnisse

6.2.1 Koronare und horizontale Krümmung

Die durchschnittliche koronare Krümmung konnte mit $166,1 \pm 6,0^\circ$ gemessen werden. Dabei zeigte die Mehrheit (71%) der CT-Datensätze eine koronare Krümmung im schwach gekrümmten Bereich (164-180°). Dies bestätigt qualitativ die Ergebnisse der Studie von Aparicio, in der ebenfalls vorrangig eine schwache Krümmung festgestellt werden konnte (193). Die exakte prozentuale Verteilung weicht von den Ergebnissen dieser Studie ab, was jedoch durch die unterschiedlichen Klassifizierungsmethoden erklärt werden kann. Ebenfalls bestätigt werden konnte die von Haase et al. beschriebene hohe Variationsbreite der koronaren Krümmungsgrade (192).

Die horizontale Krümmung der Crista zygomaticoalveolaris wurde bisher nur in dieser Studie untersucht und zeigte einen Durchschnittswert von $124,4 \pm 8,9^\circ$. Bei dem größten Anteil (64%) der CT-Datensätze wurde ein horizontale Krümmung im mittleren Bereich (111-129°) ermittelt.

6.2.2 Knochendicke

Bei der Messung der Knochendicke zeigte sich bei den CT-Datensätzen am häufigsten eine mittlere Knochendicke von 1,2-1,8 mm (CT: 67%). Eine dicke Knochenschicht (1,9-2,5
mm) war bei den CT-Datensätzen mit 9% vertreten. Auf den CT-Datensätzen wurde durchschnittlich eine Dicke von $1,4 \pm 0,3$ mm gemessen.

6.2.3 Abstand zum Foramen infraorbitale

In der vorliegenden Arbeit wurde der kürzeste Abstand der Crista zygomaticoalveolaris zum Foramen infraorbitale erstmals genauer analysiert um weitere Rückschlüsse auf die Entnahmemorbidität des Knochentransplantats zu ziehen. Dabei wurde bei den CT-Datensätzen ein durchschnittlicher Abstand von der Obergrenze der Crista zygomaticoalveolaris zum Foramen infraorbitale von $13,9 \pm 2,2$ mm ($10,1-19,4$ mm) ermittelt. Somit ist das Risiko einer Nervschädigung des Nervus infraorbitalis als gering einzuschätzen.

6.2.4 Kranio-kaudale Länge

Bei der Analyse der CT-Datensätze konnte eine durchschnittliche kranio-kaudale Länge von $13,3 \pm 2$ mm gemessen werden. Mit 53% zeigte die Mehrzahl der Datensätze eine mittlere kranio-kaudale Länge von 13-16 mm. Der Durchschnittswert von 13 mm konnte bei der praktischen Umsetzung an sieben von zehn Schädelpräparaten ohne Verletzung der Zahnwurzeln angewandt werden. Trotz der geringen Zahl von untersuchten Präparaten liefert dies einen ersten Hinweis auf die klinische Anwendbarkeit des ermittelten Wertes.
Insgesamt unterstützt dieses Ergebnis die Studien von Gellrich et al. und Yates et al., die bei der Untersuchung der Knochenfläche der Crista zygomaticoalveolaris eine begrenzte Knochenmenge für die Deckung von Knochendefekten von ein bis zwei Zahnbreiten feststellen konnten (174,191).

6.3 Schlußfolgerung und Ausblick
Mit der vorliegenden Studie sollte die Eignung der Crista zygomaticoalveolaris als intraorale Spenderregion durch die Erhebung wesentlicher anatomischer Dimensionen veranschaulicht und damit genauer beurteilt werden.

Bei einer durchschnittlichen Länge von 13 mm und der fest vorgegebenen Breite von 12 mm konnten Knochentransplantate gewonnen werden, die sich regelmäßig für Knochendefekte von ein bis zwei Zahnbreiten verwenden lassen. Der Vorteil der Spenderregion liegt dabei klar in der geringen Entnahmemorbidität und dem geringen Operationsrisiko. Besonders hervorzuheben ist die Form der koronaren und horizontalen Krümmung, die das Knochentransplantat einzigartig von anderen intraoralen Spenderregionen unterscheidet.

Bei der Beurteilung der Ergebnisse ist zu berücksichtigen, dass diese nur anhand von bildgebenden Verfahren ermittelt worden sind, die zwar fundierte qualitative Aussagen über die Crista zygomaticoalveolaris als Spenderregion zulassen und über eine Vermessung der Human-Schädelpräparate mit geringer Fallzahl erweitert wurden, jedoch noch im klinischen Umfeld angewandt, erprobt und umgesetzt werden sollten.

Hierbei müßte zunächst die praktische Umsetzbarkeit der kranio-kaudalen Länge überprüft werden. Weitergehend ließen sich Untersuchungen zur Revaskularisierung bei Einheilung des Knochentransplantats in Abhängigkeit von der Knochendicke ergänzen. Im Hinblick auf die unterschiedlichen Krümmungsgrade sollte außerdem analysiert werden, welche Anforderungen das Transplantatlager selbst an das Transplantat stellt.

Aufbauend auf den vorliegenden Ergebnissen könnten diese klinischen Studien den Kenntnisstand zur Crista zygomaticoalveolaris als Spenderregion zusätzlich erweitern.
7. Zusammenfassung

Die Messungen der CT-Datensätze zeigten im Durchschnitt eine koronare Krümmung von 166,1 ± 6,0°. Bei 71% konnte eine koronare Krümmung im schwach gekrümmten Bereich (164-180°) ermittelt werden. Der Durchschnittswert der horizontalen Krümmung lag bei 124,4 ± 8,9° mit dem größten Anteil (64%) im mittleren Krümmungsbereich (111-129°).

Die Knochendicke der Crista zygomaticoalveolaris konnte bei durchschnittlich 1,4 ± 0,3 mm mit 67% im mittleren Bereich von 1,2-1,8 mm erfasst werden. Der kürzeste Abstand des Knochentransplantats zum Foramen infraorbitale zeigte sich bei 13,9 ± 2,2 mm mit dem größten Anteil (58%) im mittleren Bereich (13-16 mm). Die durchschnittliche kranio-kaudale Länge wurde bei 13,3 ± 2 mm mit 53% im mittleren Bereich (13-16 mm) bestimmt.

Im Hinblick auf die Eignung der Crista zygomaticoalveolaris und die klinische Relevanz der genannten Ergebnisse konnten die folgenden Rückschlüsse gezogen werden: Die Besonderheit der Spenderregion besteht in einer gekrümmten Knochenmorphologie, wobei eine ausgeprägtere Krümmung in horizontaler Richtung als in koronarer Richtung

Diese Ergebnisse erweitern den aktuellen Wissensstand zur Anatomie der Crista zygomaticoalveolaris im Hinblick auf ihre Eignung als intraorale Spenderregion und machen gleichzeitig ihre Anwendung für den Praktiker vorhersehbarer. In einem nächsten Schritt sollte eine Vertiefung der gewonnenen Erkenntnisse durch klinische Studien erfolgen, um die praktische Relevanz der gewonnenen Kennwerte zu überprüfen.
8. Literatur

(2) Gemeinsame Stellungnahme der DGZMK und der DGI V 3/0. , Stand 7/2005.

(8) Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 2011;42 Suppl 2:77-81.

(212) Baxter BS, Sorenson JA. Factors affecting the measurement of size and CT number in computed tomography. Invest Radiol 1981;16(4):337-341.

10. Erklärung
(nach § 2 Abs. 2 Nrn. 5 und 6 der Promotionsordnung)

Ich erkläre, dass ich die der Medizinischen Hochschule Hannover zur Promotion eingereichte Dissertation mit dem Titel

Die Crista zygomaticoalveolaris des Menschen unter besonderer Berücksichtigung ihrer Eignung als Spenderregion bei der Gewinnung von intraoralen Knochentransplantaten

11. Danksagung
Ich danke meinem Doktorvater Herrn Prof. Dr. Dr. Hannes Peter Schierle für die Überlassung des Themas der Dissertation und die engagierte Betreuung.

Mein besonderer Dank gilt auch Frau Dr. Michal-Constanze Müller für die freundliche und zuverlässige Hilfestellung bei der Dissertation, sowie für ihre ideenreiche und hilfsbereite Anleitung und Zusammenarbeit.

Zudem möchte ich mich bedanken bei Herrn Dr. Ludwig Hoy des Zentrums für Biometrie für die kompetente Hilfe bei der statistischen Auswertung der erhobenen Werte.

Die Analyse der Schädelpräparate wäre nicht möglich gewesen ohne die Hilfe von Herrn Werner Kohne und Herrn Günter Braun, Präparatoren des Zentrums Anatomie der Medizinischen Hochschule Hannover, die die mazerierten Schädelpräparate angefertigt haben.

Mein persönlicher Dank gilt meinem Freund Florian Krampe, meinen Eltern Dr. Reinhard und Astrid Wiedemann und meiner Schwester Anna Linn, die mich jederzeit unterstützen.